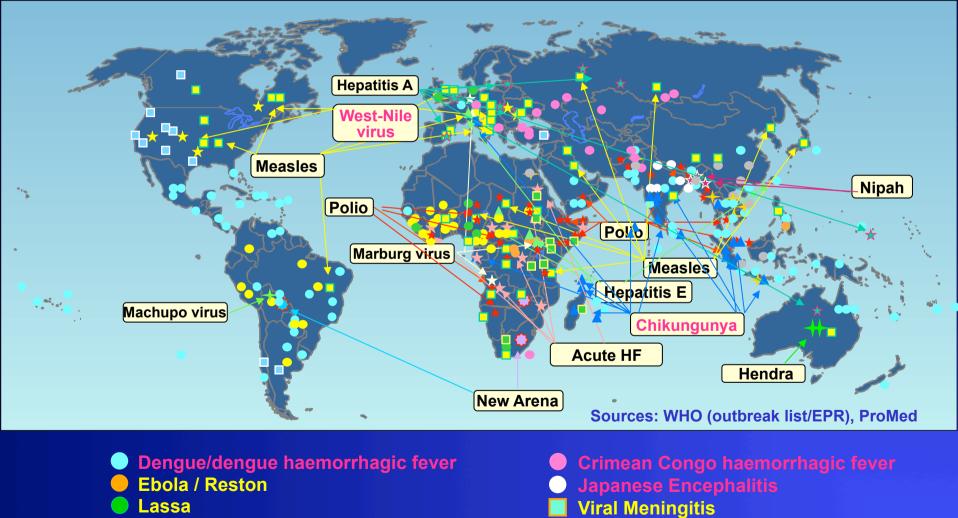

Imported viral diseases to Europe. - A risk for future outbreaks? -

European Network for Diagnostics of "Imported" Viral Diseases (ENIVD).

ROBERT KOCH INSTITU

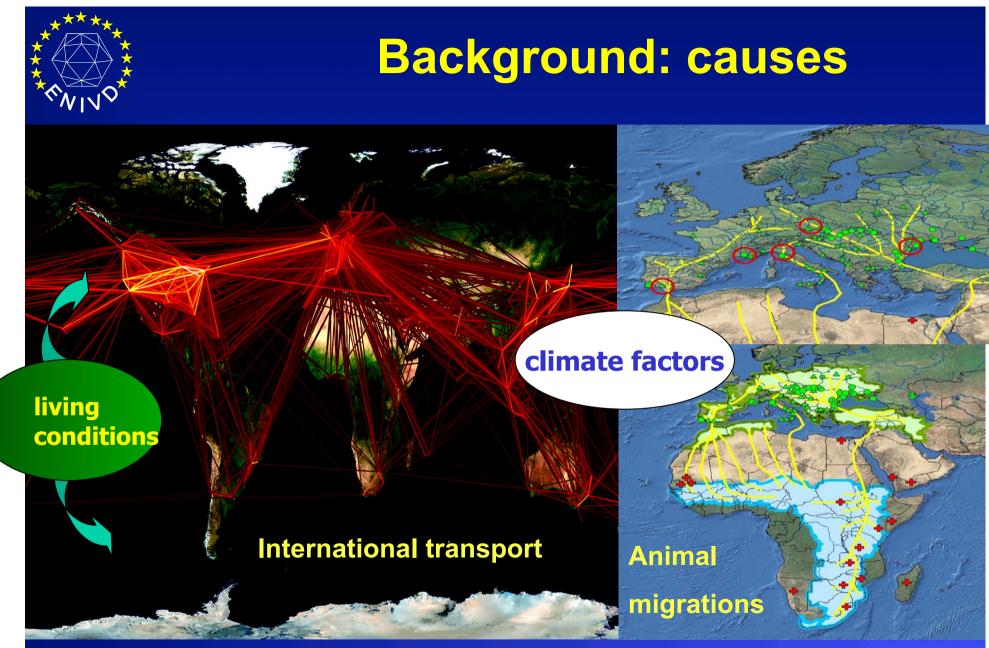
Matthias Niedrig, Berlin, Germany

ENIVD 06 / 10 13:15

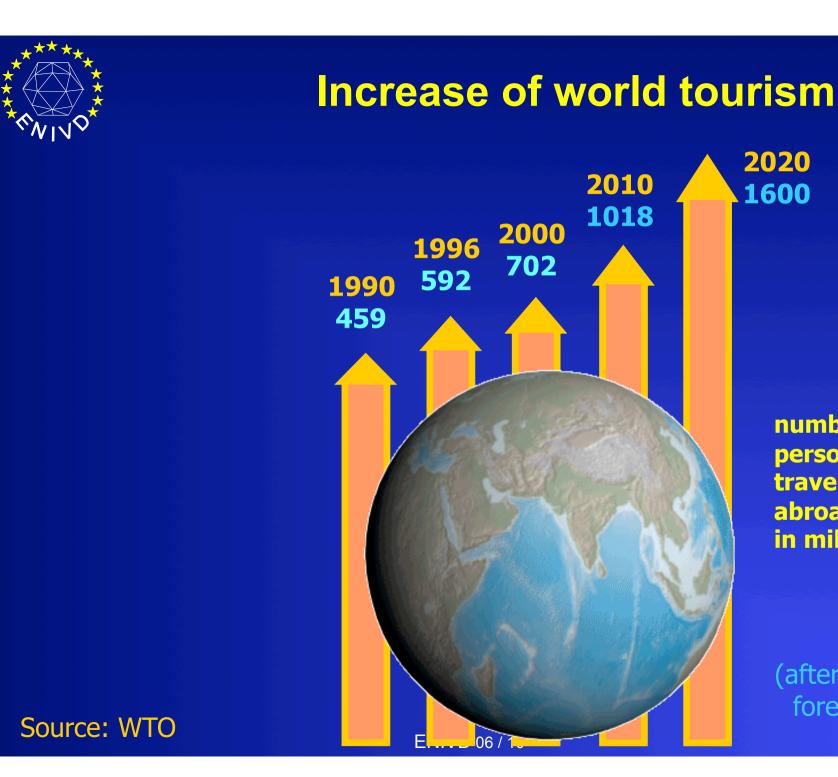


Is Europe prepared for an international infectious disease outbreak?

ENIVD 06 / 10 13:15



Viral Threats Worldwide 2005/ 2006 / 2007/ 2008/ 2009



- Yellow fever
- Influenza

ENIVD 06 / 10 Hanta

travellers / infectious pathogens [Dengue, Malaria, ...] Goods / vectors [rodents, mosquitoes, 10-1]

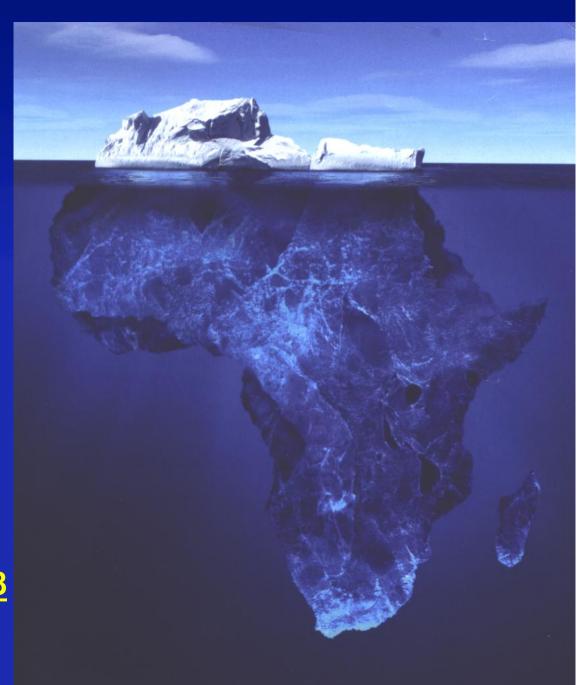
number of persons travelling abroad in millions

2020

1600

(after 2006 forecast)

Import of suspected and confirmed Viral HFs and SARS to Europe


time	Imported	Imported	Viral pathogen	N° of cases	Business /		
Aug. 1000	from	to		/fatalities	Tourist		
Aug 1999	Ivory Coast	Germany	Yellow Fever	1/1	Business		
Jan 2000	Ivory Coast	Germany	Lassa	1/1	Tourist		
Feb 2000	Sierra Leone	UK	Lassa	1/1	Business		
Mar 2000	Nigeria	Germany	Lassa	1/1	Repatriation		
Jun 2000	Sierra Leone	Netherlands	Lassa	1/1	Business		
Dec 2000	Kenya	Germany	Suspected VHF ³	1/1	Tourist		
Mar 2001	Sierra Leone	Germany	Suspected VHF ²	1 / 0	Business		
Mar 2001	Chile/Argentine	France	Hanta (Andes)	1 / 0	Tourist		
Mar 2001	Sierra Leone	Germany	Suspected VHF ²	1 / 0	Business		
Aug 2001	Bulgaria	Germany	CCHF 🕘	1 / 0	Tourist		
Sep 2001	Rep. of Chad	France	RVF 🔴	2 / 0	Business		
Nov 2001	The Gambia	Belgium	Yellow Fever	1 / 1	Tourist		
Sep 2002	Nepal	Spain	Suspected VHF ¹	1 / 0	Tourist		
Oct 2002	Cameroon	Rep. Ireland	Suspected VHF ²	1 / 0	Business		
Feb 2003	Sierra Leone	UK	Lassa	1 / 1	Business		
Feb 2003	China, Vietnam	Europe	SARS	33/1	Tourist/Bus.		
2004	USA	Germ./France	West Nile virus 🔴	4/0	Tourist		
July 2004	Portugal	Rep. Ireland	West Nile virus 🔴	2 / 0	Tourist		
Oct 2004	Tunesia	France	West Nile Virus 🔴	1 / 0	Tourist		
Nov 2004	Senegal	France	CCHF 🔴	1 / 0	Repatriation		
2005	Reunion	Europe	Chikungunya 🔴	ca. 164/0	Tourist/Bus.		
Nov 2006	India	Lithuania	Rabies	1 / 1	Tourist		
2007	Morocco	Germany	Rabies	1 / 1	Tourist		
Apr 2007	India	Germany	Rabies	1/1	Tourist		
Jun 2007	India	Italy	Chikungunya 🔴	1 / 0	Tourist		
Jan 2008	Kenya	Netherlands	Rabies	1 / 1	Tourist		
July 2008	Uganda	Netherlands	Marburg	1/1	Tourist		
Jan 2009	Nigeria	UK	Lassa	1/1	Tourist		
¹ no final diagnosis, ² final diagnosis: Malaria, ³ final diagnosis: generalised HSV-1							

Recognized imported viral infections -

Tip of an iceberg?

The ratio tells us that 7/8 of the iceberg's mass must be below water.

Reservoirs for transmission of virus infections

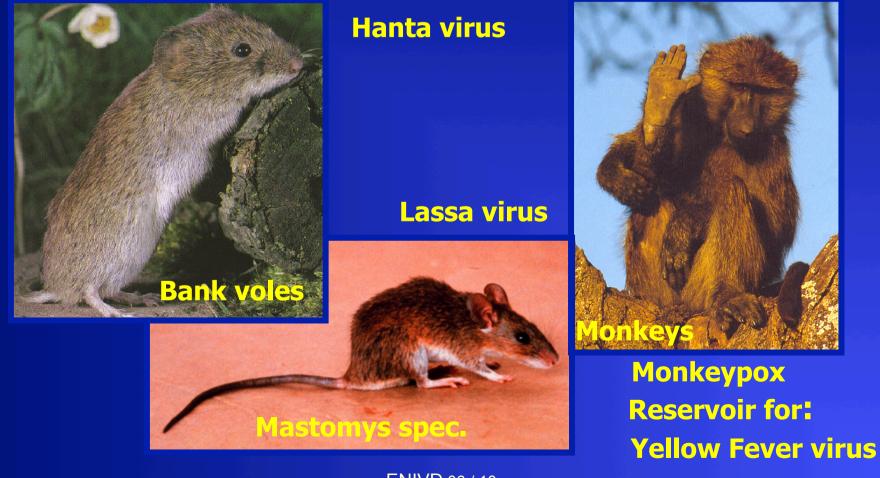
Rift Valley Fever Crimean Congo HF

goats & sheep

domestic animals

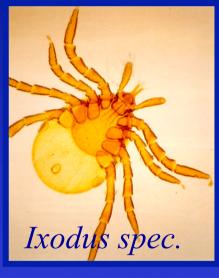
Rabies virus

Nipah virus ENIVD 06 / 10

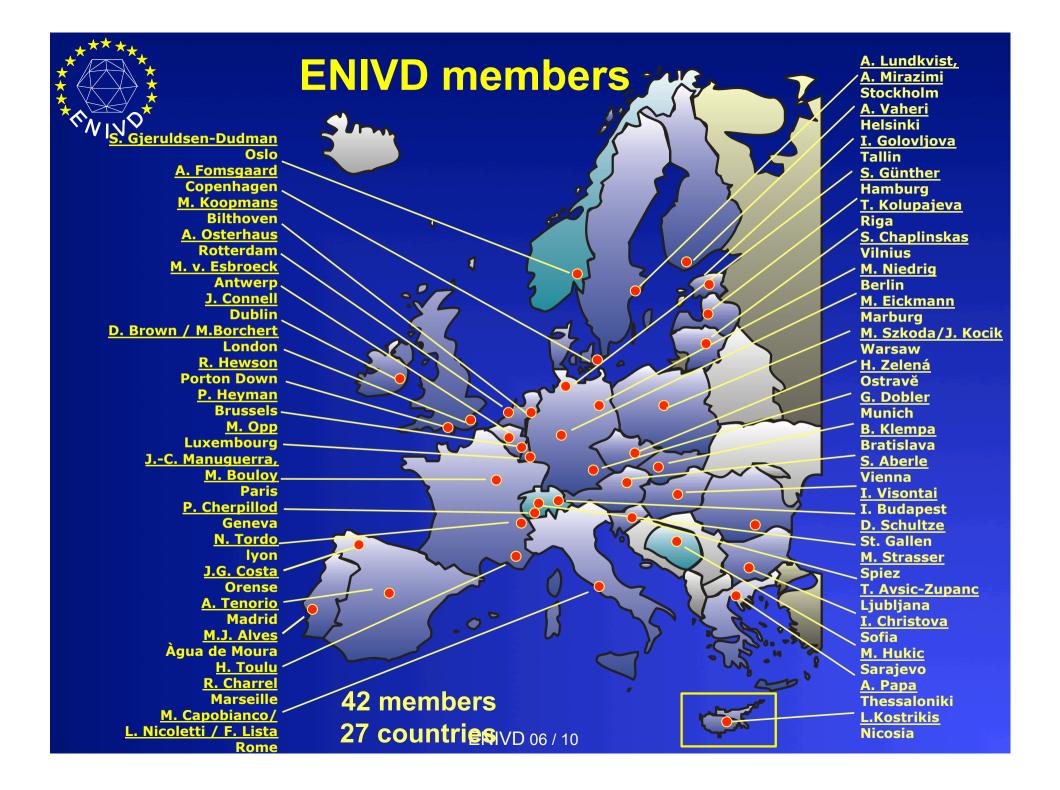


Vectors for transmission of virus infections

wild animals



Vectors for transmission of virus infections



Yellow Fever virus Dengue virus Phlebovirus

Tick borne encephalitis Omsk hemorraghic fever virus

*****	Date	Place Partici	pants	Countries	Guests	ENIVD
* [*] [*] [*] [*] [*]	06/95	Berlin	5	3		meetings
	01/96	Porton Down	6	4		
	07/96	Marburg	8	6		
	05/97	Thessaloniki	17	12	WHO & EC	
5	02/98	Paris	20	11	WHO & CDC	
	11/98	Berlin	28	16	WHO & EC & PAHO	EC funding
	06/99	Rotterdam	30	12	WHO	Lorunang
	04/00	Orense / Spain	26	14	WHO & CDC	
	11/00	Luxembourg	27	16	EC	
10	04/01	Palmela/Portugal	36	17	WHO & Japan	
	05/02	Chalkidiki/Greece	35	17	WHO & EC	
	05/03	Helsinki	38	21	WHO	
	05/04	Ljubljana	38	23	Russia	
	06/05	Rome	44	21	WHO, Brazil, Arger	ntina
15	05/06	Warsaw	47	25	ECDC, WHO, Israe	l, Russia, S. Africa
	05/07	Limassol / Cyprus	49	25	ECDC, WHO, Israe	l, Russia, Egypt
	05/08	Madrid	49	25	ECDC, WHO, Israe	l, Russia, Iran,
	05/09	Prague	65	31	South America ECDC, WHO, Israe	
			ENI	VD 06 / 10	Albania, Turkey, U	kraihe

Tasks of the European Network for diagnostics of"Imported" Viral Diseases (ENIVD)

- 1. Build a network of European laboratories working on diagnostics of "imported" and rare viral infections.
- 2. Identify those viral infections more likely to be imported and co-ordinate the objectives and identify laboratories, capable and willing to perform the rapid diagnostics (< 24h) of an acute case, suspected to be a viral haemorrhagic fever.

Tasks of ENIVD (2)

- 3. Work out recommendations for standardisation and quality control in laboratories involved in the diagnostics of such diseases.
- 4. Identify and operate standard assays according to defined quality control criteria.
- 5. Optimise limited resources by exchanging reagents, methodologies, and expertise.
- 6. Encourage regular contact within the network through meetings and exchange of laboratory personnel.

Tasks of ENIVD (3)

7. Open the network for members of other European laboratories.

8. Organise and coordinate international activities with the "Surveillance network group", and other national organisations like CDC, or international organisations like ECDC, WHO or PAHO

DECISION No 2119/98/EC OF THE ** EUROPEAN PARLIAMENT AND OF THE COUNCIL

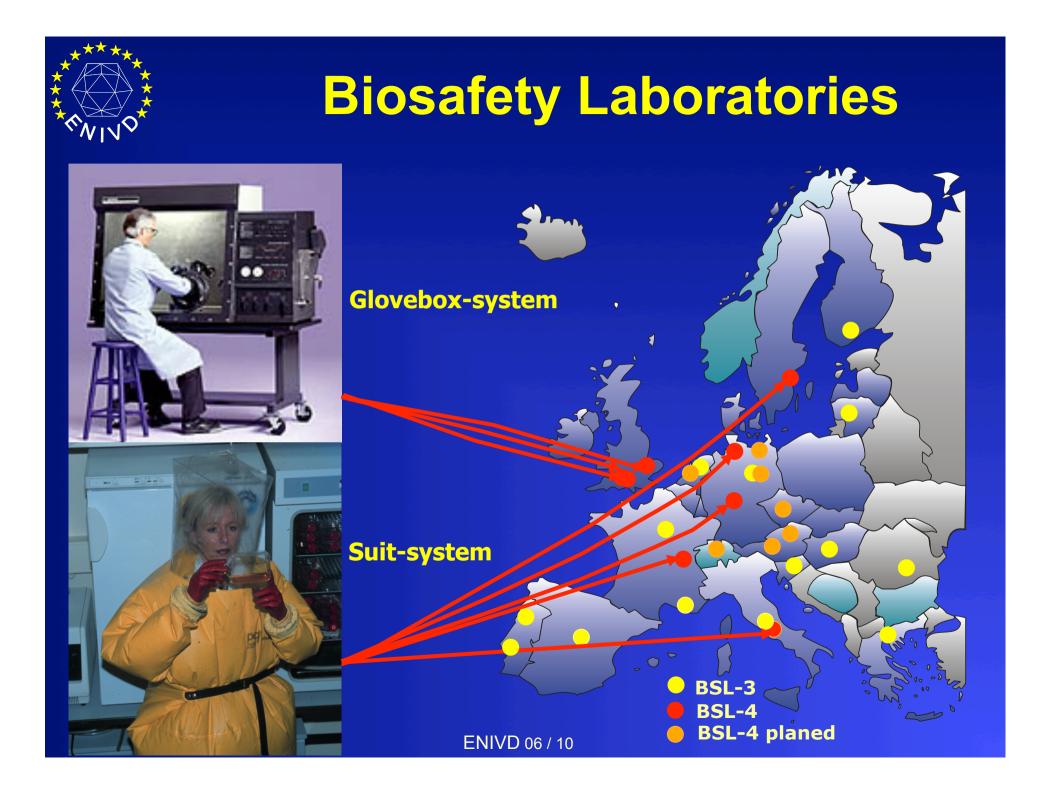
of 24 September 1998

Setting up a network for the epidemiological surveillance and control of communicable diseases in the Community

Article 1: ... As regards the early warning and response system, this network shall be formed by bringing into permanent communication with one another, through appropriate means, the Commission and the competent public health authorities in each Member State responsible for determining the measures which may be required to protect public health

Article 3 (f): guidlines on the protective measures to be taken, in particular at external frontiers of the Member States notably in emergency situations;

Article 4 (e): information concerning existing and proposed mechanisms and procedures for the prevention and control of communicable diseases, in particular in emergency situations;


DECISION No 2119/98/EC OF THE

Annex

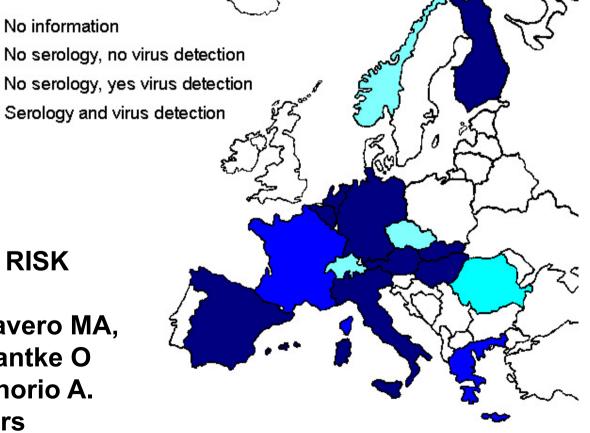
LIST INDICATING CATEGORIES OF COMMUNICABLE DISEASES

- ✓ Diseases preventable by vaccination
- Sexually-transmitted diseases
- ✓ Viral hepatitis
- ✓ Food-borne diseases
- ✓ Water-borne diseases and diseases of environmental origin
- Nosocomial infections
- ✓ Other diseases transmissible by non-conventional agents
- Diseases covered by the international health regulations (yellow fever, cholera and plague)
- Other diseases (rabies, typhus, viral haemorrhagic fevers*, malaria and any other yet unclassified serious epidemic diseases, etc.)

* VHFs: Crimean Congo HF, Ebola / Marburg virus HF, Lassa fever,

Capacity for USUTU virus diagnostic in Europe.

In September 2009, two acute cases of neurological disease in humans were associated to Usutu virus infection in Italy.

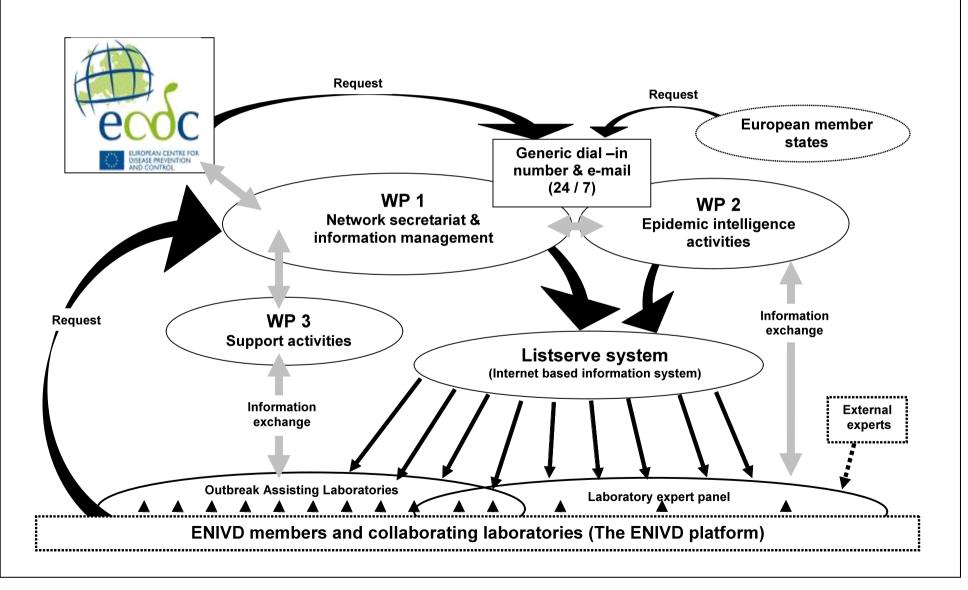


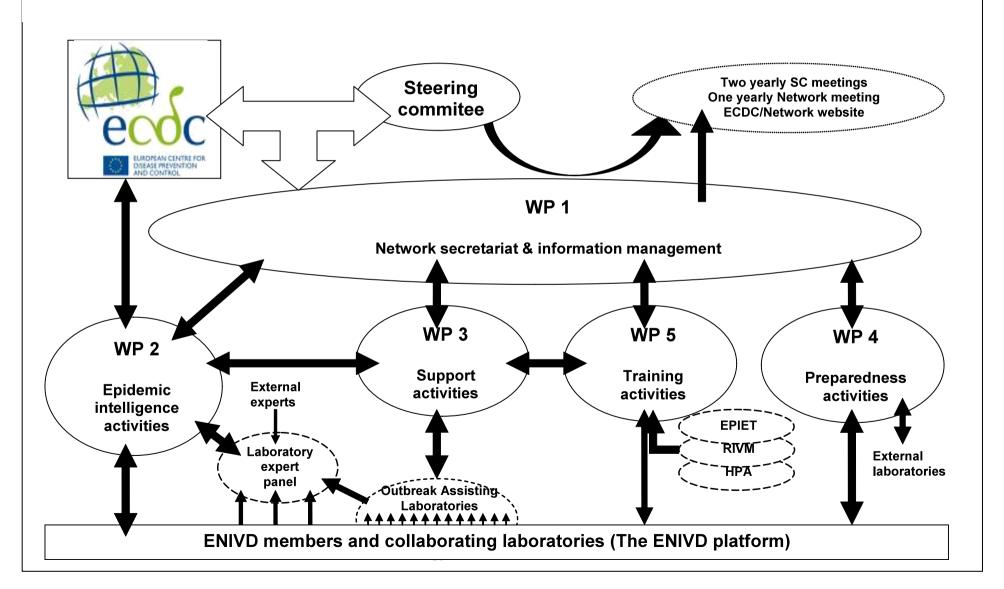
No information

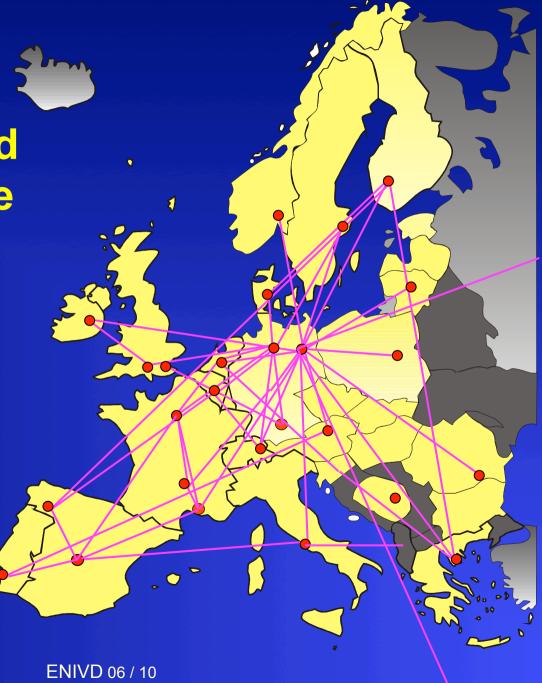
No serology, no virus detection

Serology and virus detection

USUTU, A POTENTIAL RISK FOR EUROPE Franco L., Jiménez-Clavero MA, Vázquez A, Donoso-Mantke O Niedrig M, Zeller H, Tenorio A. and the ENIVD members


Distribution of information using Listserv


Request & information exchange of the ENIVD-CLRN

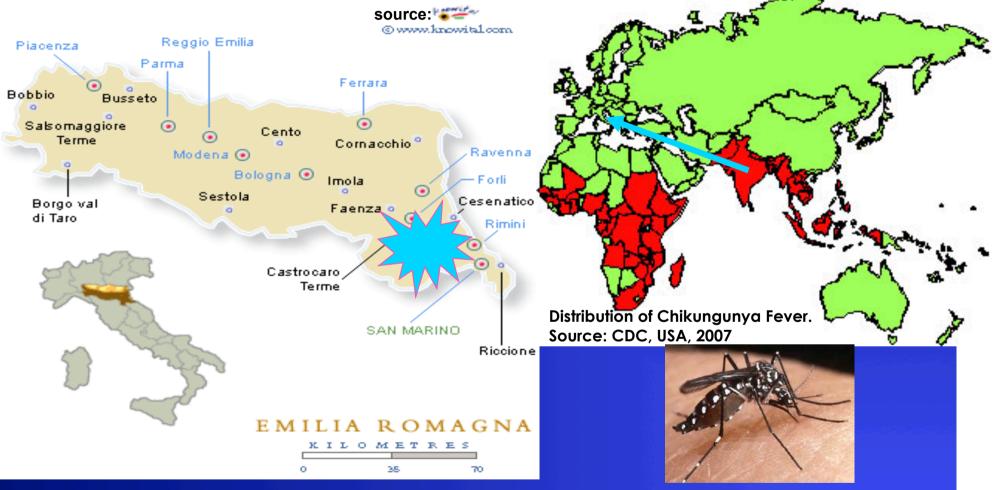

Structure & project management of the ENIVD-CLRN

Co-operations and material exchange between ENIVD members

Canada (USA •

Distribution of CHIK since 2005

2005 Comores Mauritius Reunion 2006


2007

 \checkmark

 \checkmark

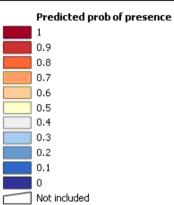
Chikungunya Ausbruch in Italien im Juni 2007

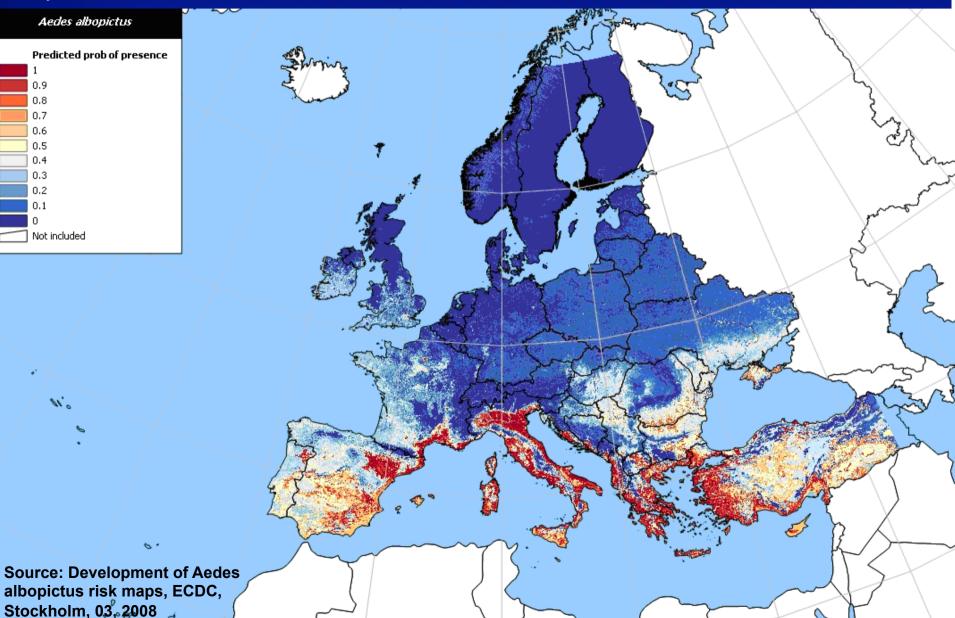
15th June – 21st Sep. 292 suspected cases of Chikungunya Fever

125 cases were confirmed by laboratory diagnosis

Increase of Aedes albopictus in the region in recent years

Vectors for transmission of virus infections

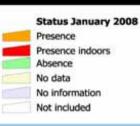



Yellow Fever virus Dengue virus Phlebovirus

Tick borne encephalitis Omsk hemorraghic fever virus

East and westward invasion of Aedes albopictus in the Mediterranean basin

Aedes albopictus



Current distribution of Aedes albopictus in Europe, January 2008

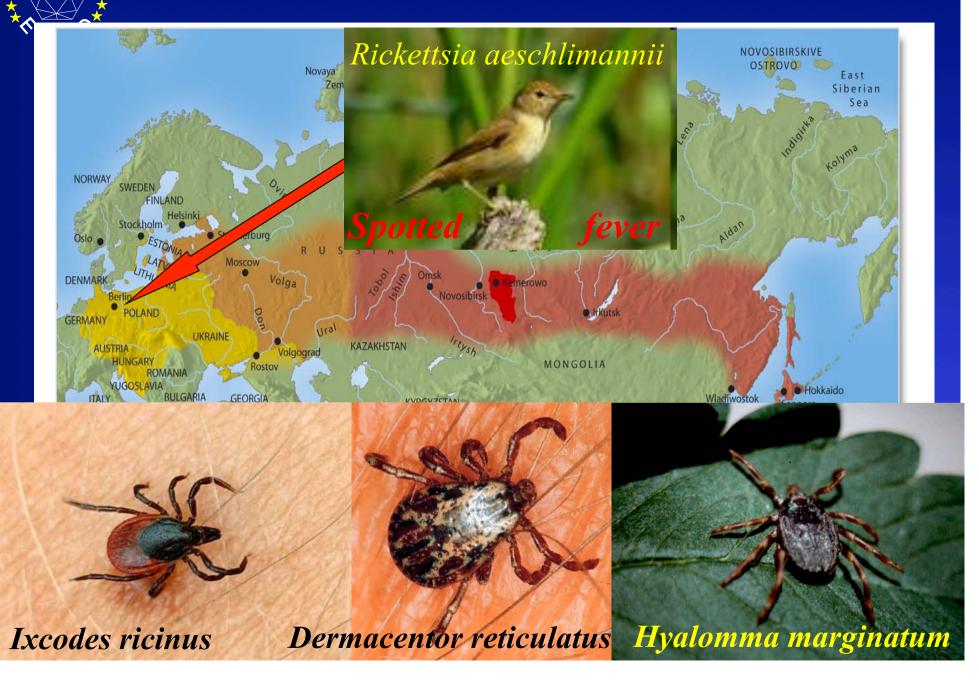
Aedes albopictus

Aedes aegypti establishment and spread in Europe

surveys and studies on mosquitoes were conducted during the last five years (2003– 2007) and no specimen of *Aedes albopictus* was reported

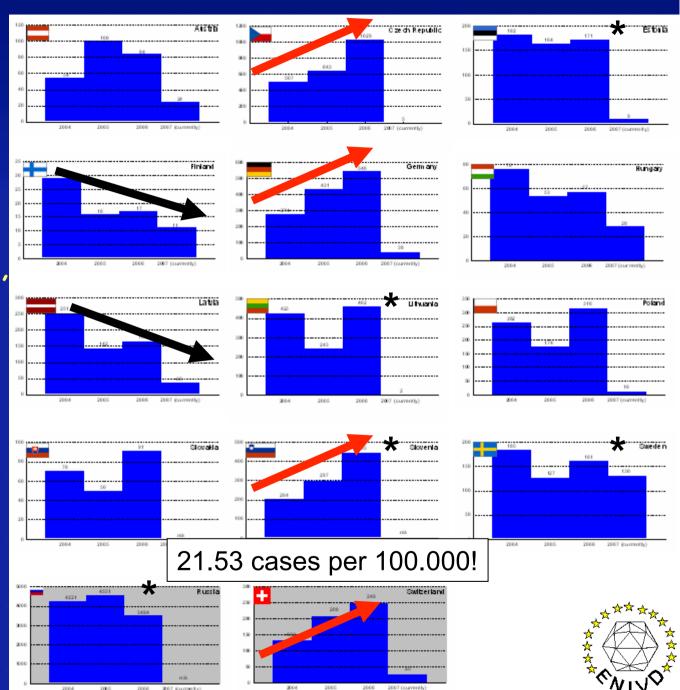
Aedes albopictus was reported No information

Source: Development of Aedes albopictus risk maps, ECDC, Stockholm, March, 2008 Straetemans M. Eurosurveillance 2008, vol 13 (1-3)

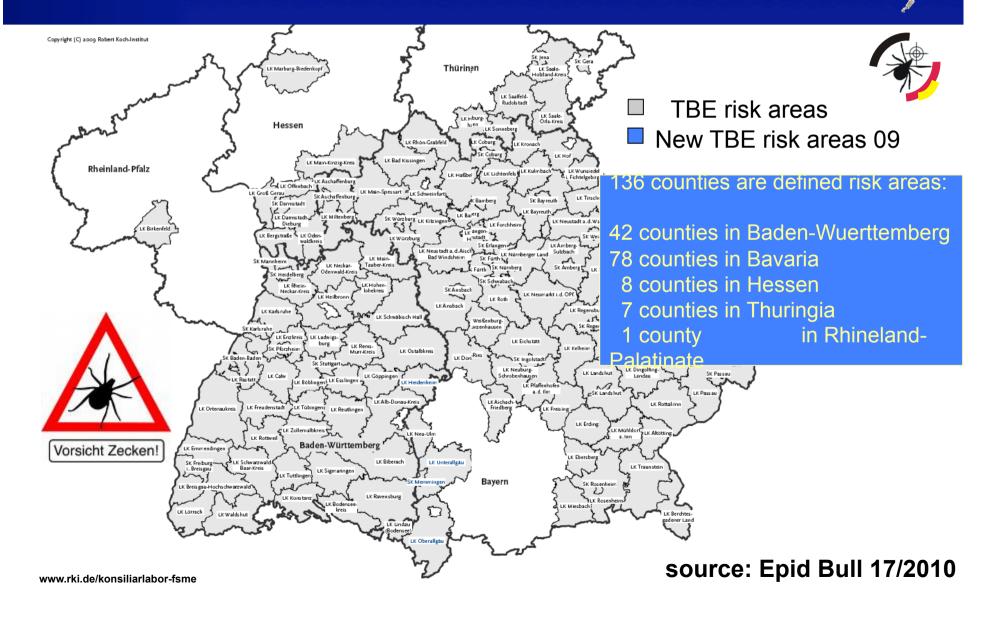


Recent detected "new / emerging" viruses in Europe

Distribution of Tick borne encephalitis

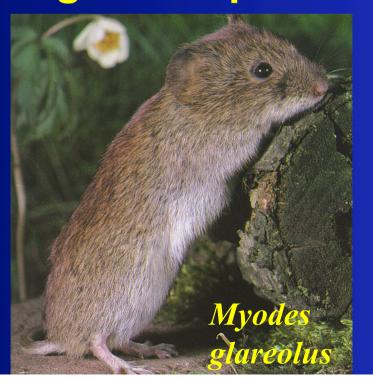

Annual case numbers of TBE in European countries, 2004- summer 2007

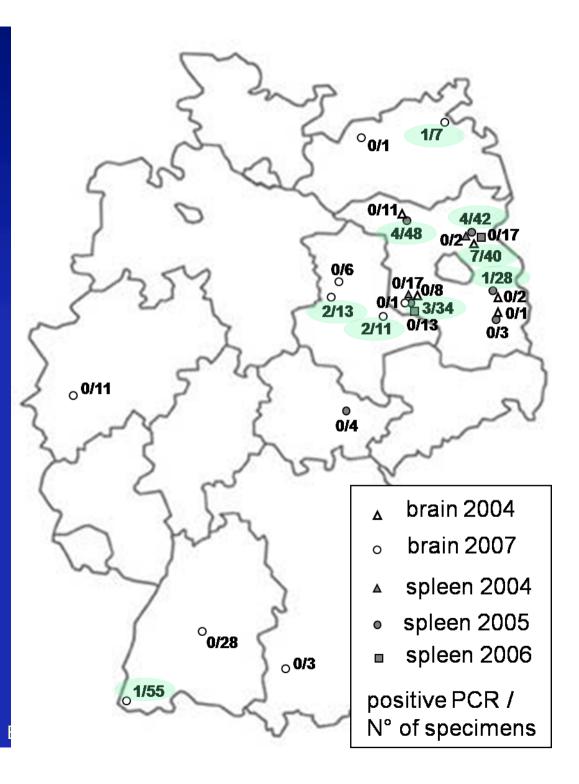
2-fold increase


highest incidence

Lithuania 13.14 Estonia 12.35

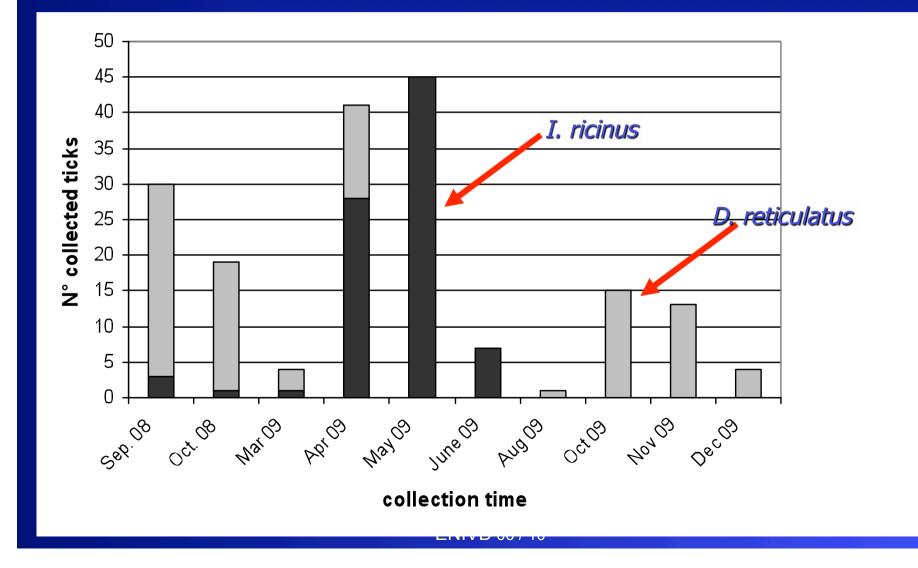
 moderate decrease
marked incidences (1.65-13.14)

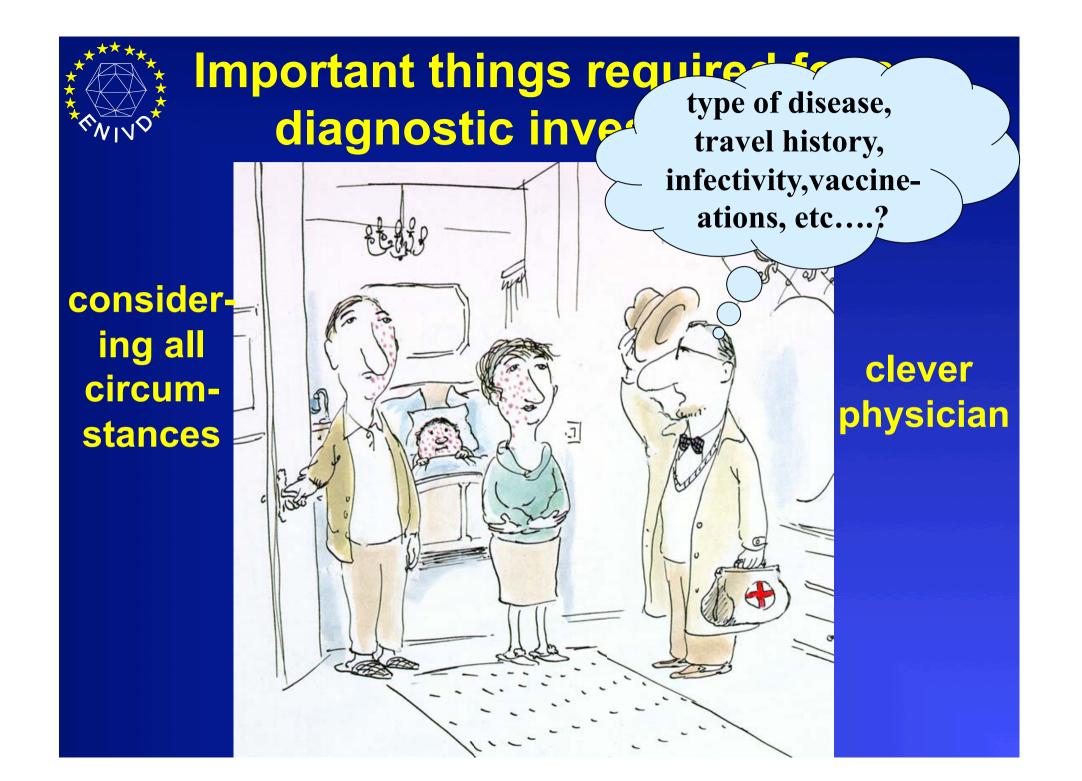


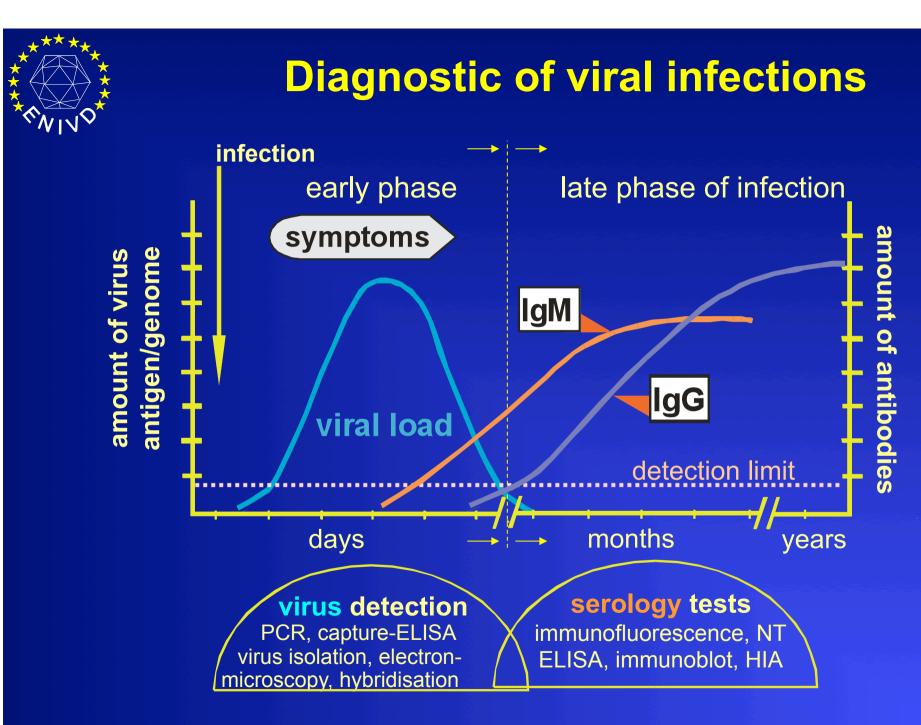

TBE endemic areas in Germany, 2010

Map of Germany with sampling sites of positive tested rodent organ samples.

Study on ticks around Berlin


Sampling	N° of	N° of	N° of	Borrelia	N° of	Anaplasma	N° of	Rickettsia	N° of	Babesia
Area	<i>D. reticulatu</i> s/ N°	collected	pos. ticks /	% of	pos. ticks /	% of	pos. ticks /	% of	pos. ticks /	% of
(geographical	of collected ticks	tick	N° of ticks	positive	N° of ticks	positive	N° of ticks	positive	N° of ticks	positive
coordinates)	(% of <i>D. reticulatu</i> s	stages	tested (%	tick	tested (%	ticks	tested (%	ticks	tested (%	ticks
	ticks) [factor for tick density / 100m ²]*		of pos. ticks)	stages	of pos. ticks)	stages	of pos. ticks)	stages	of pos. ticks)	stages
Bucher Forst	0 / 162	l = 39	8 / 37	I = 0	0 / 35	I = 0	11 / 32	l = 0	4 / 43	l = 0
(N52.64377	(0)	n = 112	(21.6)	n = 22	(0)	n = 0	(34.4)	n = 34	(9.3)	n = 10.8
E13.48016)	[2.4]	a = 11		a = 20		a = 0		a = 50		a = 0
Frohnau	0 / 96	l = 66	1 / 30	I = 0	1 / 30	I = 0	9 / 30	l = 0	1 / 30	l = 0
(N52.64913	(0)	n = 26	(3.3)	n = 3.8	(3.3)	n = 3.8	(30.0)	n = 31	(3.3)	n = 3.8
E13.30765)	[2.5]	a = 4		a = 0		a = 0		a = 100		a = 0
Wannsee	4 / 97	l = 75	3 / 39	I = 0	8 / 34	I = 0	14 / 32	l = 53	3 / 31	l = 12
(N52.42118	(4.1)	n = 16	(7.7)	n = 12.5	(23.5)	n = 62	(43.8)	n = 18	(9.7)	n = 62.5
E13.10468)	[2.9]	a = 6		a = 16.7		a = 0		a = 75		a = 0
Teufelssee	1 /17	l = 5	3 / 17	I = 0	2 / 17	I = 0	3 / 17	l = 40	0 / 17	l = 0
(N52.42804	(5.9)	n = 6	(17.6)	n = 0	(11.8)	n = 40	(17.6)	n = 43	(0)	n = 0
E13.62377)	[0.2]	a = 6		a = 75		a = 0		a = 25		a = 0
Michendorfer	124 / 216	I = 6	4 / 74	I = 0	2 / 30	I = 0	49 / 92	l = 40	0 / 32	l = 0
Heide	(58.5)	n = 56	(5.4)	n = 25	(6.6)	n = 0	(53.3)	n = 20	(0)	n = 0
(N52.32422 E13.00504)	[0.3]	a = 154		a = 4.1		a = 3.3		a = 25		a = 0
Total	191 / 585	l = 191	19 / 194	l = 0	13 / 143	I = 0	86 / 200	l = 26	8 / 150	l = 0
	(32.5)	n = 216	(9.8)	n = 15.2	(9.1)	n = 20.4	(43.0)	n = 29.2	(5.3)	n = 15.4
		a = 178		a = 23.2		a = 0.6		a = 55		a = 0


Table 1: Overview of the pathogens burden analysed by PCR of ticks collected in different sampling sites in Berlin and Brandenburg. N° = number, I = larvae, n = nymphs, a = adult, * = tick factor was calculated as an average of ticks collected by dragging from three different districts in every sampling site



Number of collected ticks in and around Berlin Sep. 08 – Dec. 09

ENIVD 06 / 10

Duration for different diagnostic methods

Virus detection	time of diagnosis	sensitivity	specificity				
- virus isolation	1 – 7 days	high*	high**				
- hybridisation	3 – 4 hours	high ¹	good				
- PCR/Pyrosequencing	3 – 4 hours	high ²	high				
- Electronmicroscopy	30 min	low ³	high				
- capture ELISA	3 – 5 hours	good ⁴	high				
Serology							
- ELISA	3 – 4 hours	high	low				
- Immunofluorescence	2 – 4 hours	good	good				
- Immunoblot	2 – 4 hours	good	good				
- Neutralisation	4 – 7 days	good	high				
- HIA	2 – 4 hours	low	good				
$ \begin{array}{c} 1 \\ ca. 10^{4} \text{ particle/ml,} \end{array}^{2} ca. 200 \text{ genome equivalent/ml,} \\ 2 \\ \geq 10^{6} \text{ particle/ml,} \end{array}^{2} ca. 200 \text{ genome equivalent/ml,} \\ ca. 0.01 \ \mu\text{g antigen/ml} \text{ENIVD 06 / 10} \end{array} \overset{*}{} \begin{array}{c} \text{depending on} \\ \text{cultivation system} \end{array} \overset{**}{} \begin{array}{c} \text{depending on} \\ \text{detection System} \end{array} \end{array} $							

SARS

corona

standard

paration

new

virus

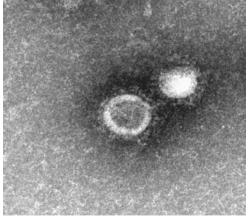
pre-

- DATA SHEET -

Standard preparation of SARS new Coronavirus for diagnostic purposes.

Berlin, 23rd April, 2003

<u>Description</u>


The samples you obtained contain cell culture supernatant of VeroE6 infected with the new Coronavirus causing the "severe acute respiratory syndrome" (SARS). The samples were thoroughly analysed for infectivity after inactivation by heat and gamma irradiation. According to the inactivation procedures used, we assure you that we provide you with safe and **non-biohazard** material which can be handled under normal laboratory conditions. The virus preparation was diluted in human plasma before aliquoting and freeze drying.

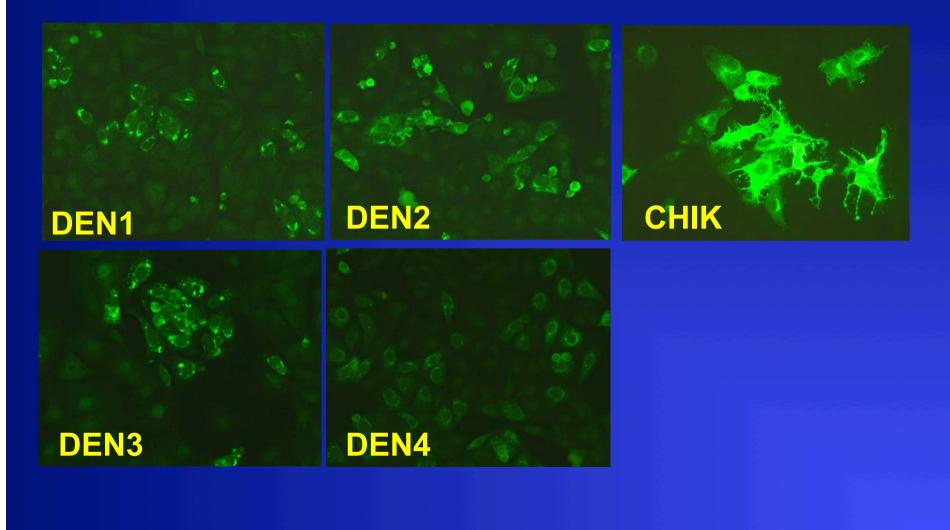
-- The sample must be resolved by adding 100 µl bi.dest. water before use. --

Analysis of the samples

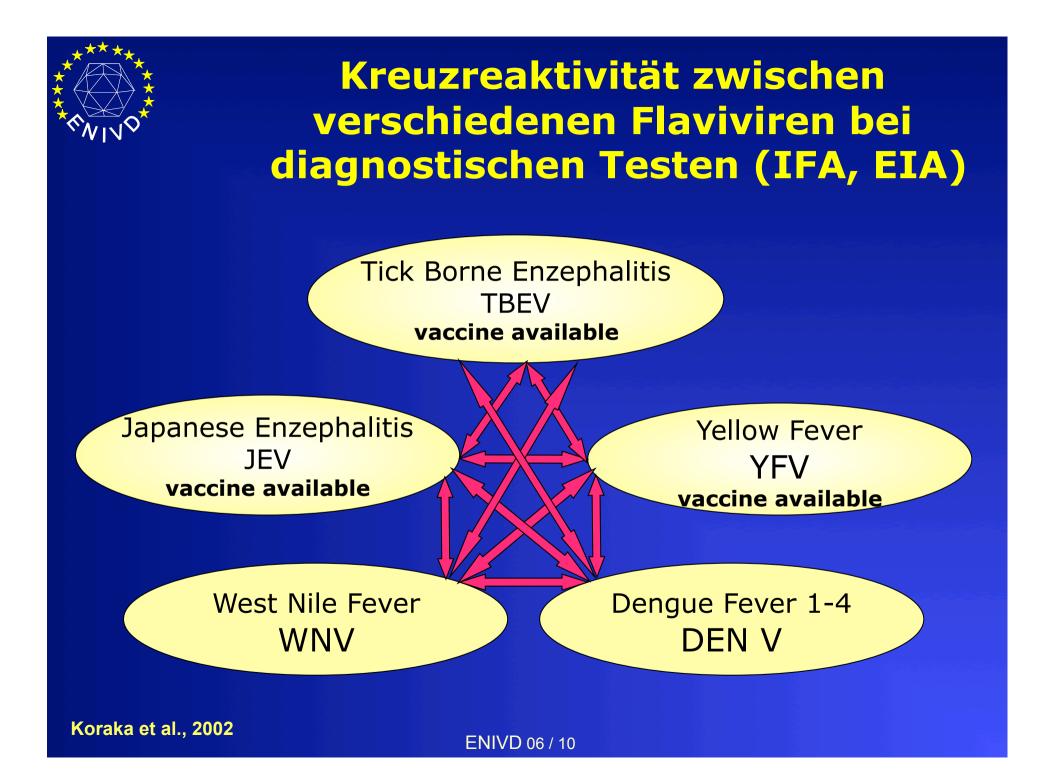
The samples contain a mean of 9.4×10^6 genome equivalents per ml (geq/ml) analysed by Christian Drosten, Bernhard-Nocht-Institut, Hamburg, Germany.

In electron microscopy analysis performed by Hans Gelderblom, Robert Koch-Institut, Berlin, Germany we could demonstrate the presence of Coronavirus particles in the samples (see picture).

The infectivity of the cell culture supernatant <u>before</u> inactivation is determined by a titre of 10^7 /ml.


Acknowledgement:

ROBERT KOCH INSTITUT



Immunofluoreszens Teste Dengue und Chikungunya

ENIVD 06 / 10

EQA studies performed by the ENIVD between 1999 and 2009

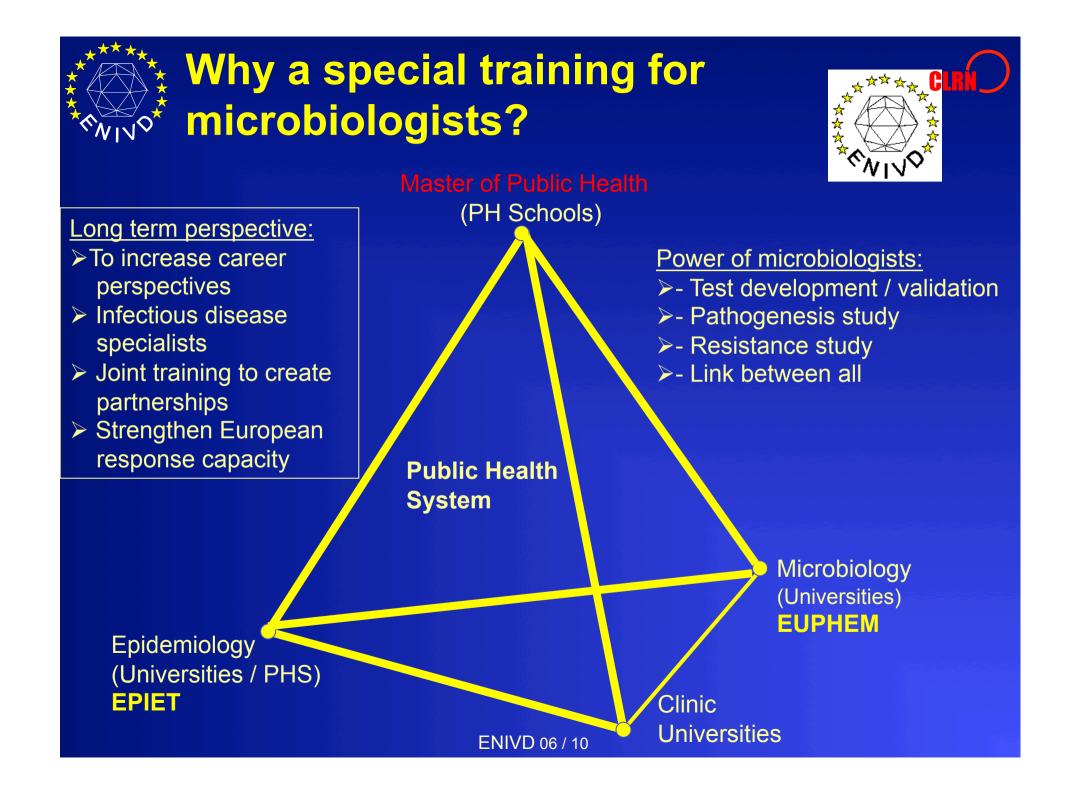
Period of time	Viral agent	Type of methods	No. of participants (labs)	No. of participants (countries)	No. of samples positive/negative	No. of labs with good overall profi ciency	Reference
1999/2000*	Hantavirus	Serology	13	10	3/1	11 (85 %)	published
2001/2002	Hantavirus	Serology	18	14	14/6	13 (72 %)	published
1999*	Dengue virus	Serology	13	10	2/2	11 (85 %)	published
2002	Dengue virus	Serology	18	16	18/2	15 (83 %)	published
2002/2003	Dengue virus	PCR	13	12	7/3	5 (38 %)	published
2002/2003	Filovirus	PCR	14	13	7/5**	7 (50 %)	published
2002/2003	Lassa virus	PCR	14	13	8/5**	8 (57 %)	published
2002/2003	Orthopox virus	PCR	23	15	13/5**	10 (43 %)	published
2004	SARS-CoV	PCR	62	37	7/3	54 (87 %)	published
2004	SARS-CoV	Serology	30	19	5/6	13 (43 %)	published
2004/2005	Orthopox virus	PCR	34	18	11/9	85% / 58% ***	published
2005	West Nile Virus	PCR	28	20	6/5	17 (60%)	published
2005	West Nile Virus	Serology	28	20	4/6	20 (71%)	published
2005	Tick borne Enc.	PCR	23	16	9/3	9 (39%)	published
2005	Tick borne Enc.	Serology	42	25	8/5	25 (60%)	published
2007	Chikungunya	PCR	32	30	8/4	21 (66%)	published
2007	Chikungunya	Serology	31	30	8/4	14 (45%)	published
2009	Dengue virus	PCR	37	25	8/4	19 (45%)	submitted

* Pre-evaluation panel tested before running the respective EQA to optimise sample preparation and shipping pro cedures. ** The same negative samples were included in the three test panels for diagnostic of Filo-, Lassa- or Orthopox virus. *** consist out of two panels: one for sensitivity and specificity including inhibiting factors

External quality assurance study on Dengue PCR diagnostic

Lab. no.	RT-PCR technique	Samples no.												Score*	Correct
		#2	#9	#12	#4	#14	#5	#13	#6	#10	#11	#3	#7		results (%)
		DEN-1	DEN-1	DEN-1	DEN-1	DEN-1	DEN-3	DEN-3	DEN-2	DEN-4	JE/YF/WNV/	сніку	Negative		
		Copy no. [ge/	ml 1								TBEV				
		7.0E+04	5,0E+03	7.5E+02	7,0E+01	7.0E+00	3.0E+03	3,0E+02	1.0E+04	1,0E+04	neg.	neg.	neg.		
8	Heminested*	++	++	++	++	++	++	++	++	++	-	-	-	22	100
7	TaqMan ^b	++	++	++	++	(-)	++	++	++	++	-	-		22	100
13	SYBR-Green ^b	++	++	++	++	(-)	++	++	++	++	-	-	-	22	100
17	TaqMan°	++	++	++	++	(-)	++	++	++	++	-	-		22	100
12	TaqMan°	++	++	++	+	++	+	(-)	++	++	-	-	-	20	91
2a	Nested ^d	++	++	++	(-)	(-)	++	++	++	++		-	-	20	91
21	Nested/SYBR-based*	++	++	++	++	(-)	++	++	++	++	(+)	-	-	20	91
2b	TaqMan°	++	++	++	(-)	(-)	++	(-)	++	++	-	-	-	18	82
4	Nested ^N /TaqMan-based	++	++	++	(-)	(-)	++	(-)	++	++	-	-	-	18	82
28	Nested/TaqMan-based*	++	++	++	(-)	(-)	++	(-)	++	++	-	-	-	18	82
15	TaqMan°	++	++	(-)	(-)	++	++	(-)	++	++	-	-	-	18	82
9	Nested/TaqMan-based*	++	++	++	+	(-)	++	++	++	+	(+)	-	-	18	82
5	TaqMan'	++	++	++	++	(-)		(-)	++	++	-	-	-	18	82
20	TaqMan'	++	++	++	++	(-)	(-)	(-)	++	++	-	-	-	18	82
14	Nested ^d	+	+	+	+	(-)	++	++	++	+	· ·	-		17	77
27	Nested ^a	+	++	++	++	(-)	++	(-)	++	++	(+)	-	-	17	77
29	TaqMan ^b	++	++	++	(-)	(-)	++	(-)	++	(-)	-	-		16	73
31	TaqMan ^{et}	+	+	+	+	+	+	+	+	+	-	-	-	15	68
23b	TaqMan°	+	+	(-)	(-)	(-)	++	(-)	++	++	-	-		14	64
19a	Nested ^d	++	++	(-)	(-)	(-)	++	(-)	(-)	++		-		14	64
1	Light Cycler ^M	++	++	(-)	(-)	(-)	+	+	++	(-)	-	-		14	64
36	Nested ^N	+	+	+	(-)	(-)	+	+	+	+	-	-	-	13	64
10	TaqMan ^o	+	+	+	(-)	(-)	+	+	+	+		-		13	59
19b	TaqMan ^h	+	+	+	(-)	+	+	+	+	(-)	-	-	-	13	59
25	Nested/TaqMan-based	**	+	(-)	(-)	(-)	++	(-)	++	(-)	-	-	-	13	59
22	TaqMan ^o	++	++	(-)	(-)	(-)			(-)	++		-		12	55
30	Nested ^a	(-)	++	(-)	++	++	(-)	(-)	+			(+)	-	11	50
37	TaqMan [®]	+	+	(-)	(-)	(-)	+	+	+	(-)		-		11	50
3	SYBR-Green ^e	+	(-)	(-)	(-)	(-)	+	(-)	+	+	-	-	-	10	45
16	Nested/Light Cycler-base		+	(-)	++	+	+	+	+	+	(+)	(+)	(+)	10	45
18 24	TaqMan ^h RT-PCR ^e	+	+	(-)	(-)	(-)			+	+	-			10 10	45 45
6	Light Cycler ^{i†}		÷	(-)	(-)	(-)				+		-		10	45
11	Nested ^j	+	+++	(-) (-)	(-) (-)	(-) (-)	:	(-) (-)	+ +		(+)	-	-	10	45
34	TagMan ^k	+	+	(-)	(-)	(-)	- (-)	(-)	(-)	+	(+)	-		9	41
35a	Nested ^d	++	++	(-)	(-)	(-)				(-)		-		10	45
23a	SYBR-Green ^e	+	(-)	(-)	(-)	(-)			+					8	36
32	Heminested*	++	(-)	(-)	(-)	(-)								8	36
33	TagMan ^h	+	+	+	(-)	(-)			+	+				8	36
26	Nested ^a	(-)	(-)	(-)	(-)	(-)			(-)	(-)				6	27
35b	Nested	6								+			(+)	5	22
													(4)		
		Correct po	sitive/negative	e results (%)											
		93	88	51	34	17	68	36.5	83	71	88	95	95		

ECDC public tender OJ/2008/04/14 – PROC/2008/007:


"European network of laboratories for outbreak assistance and support"

WP 1: Network secretariat & information management

WP 2:	WP 3:	WP 4:	WP 5:
Epidemic intelligence activities	Support activities	Prepared- ness activities	Training activities
A. Tenorio	J.C. Manuguerra	O. Donoso- Mantke	M. Koopmans

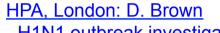
September 2008: Kick-off meeting in Stockholm → Service level agreement ENIVD 06 / 10

EUPHEM Training sides

08

Laboratory Spiez planned BSL 4

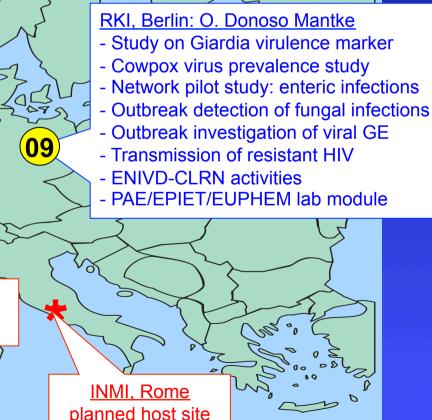
training module


08

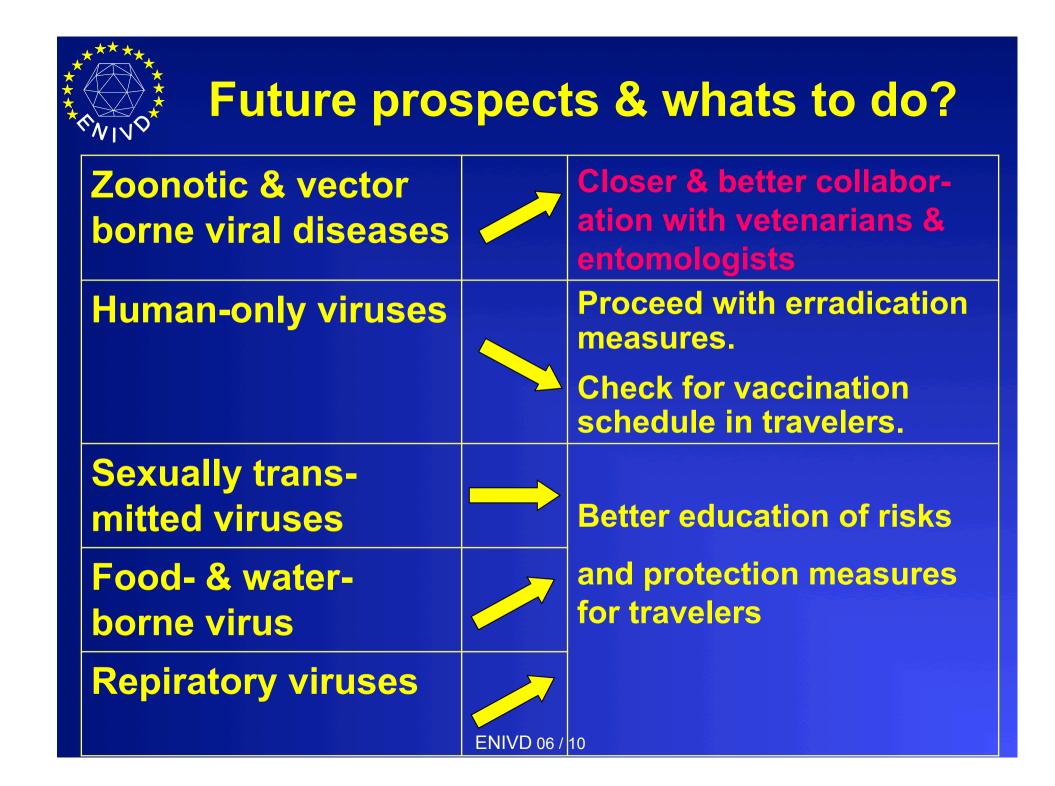
ISCIII, Madrid

planned host site

(09)


- H1N1 outbreak investigation
- Surveillance on USII
- Hep A sero-epidemiology in Europe
- Research on Picorna-/Hantaviruses
- Planned UK EPIET laboratory module

IP, Paris: P. Dubois


- Leptospirosis surveillance in Guadeloupe
- Survival of influenza virus in the Metro Paris
- DNA microarrays for Listeria species
- Molecular epidemiology of TB in Rhode Island
- ENIVD-CLRN activities

- RIVM, Bilthoven: M. Koopmans
- Cowpox outbreak investigations
- H1N1 outbreak investigation
- Microarray diagnostic for influenza
- Health risk of goose droppings
- Serosurvey of Marburg contacts
- Antibody detection in saliva for mumps
- EPIET/ECDC laboratory modules

Topics of common interest of VBORNET & ENIVD for Public Health

distribution of vectors presence of viral pathogens in the vectors studies on vector competence surveillance studies for vector borne human viral pathogens • development of test algorithm (diagnostic tools) for vector borne viral pathogens

ENIVD 06 / 10

Whats coming next we do not know?

The network is presently organised by M. Niedrig and his team from the Robert Koch-Institut in Berlin

The ENIVD-CLRN project is funded by the ECDC

www.enivd.org

Shanks for your attention ENIVD 06 / 10